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ABSTRACT

ARGOS is an image understanding system. It builds a three-dimensional model of the
task domain and uses hypothesized two-dimensional views of the model to label
images. It currently achieves less than 20Z error by area when labsling real-worid
(city of Pittsburgh) photographs with a knowledge base of over fifty objects. In
addition, the system can determine the angle of view aesround the city with
approximately 40 degrees of error.

The labeling technique used by ARGOS is called Locus search. Locus is a non-
backtracking graph ssarch technique in which a beam of near-miss alternatives around
the best path are extended in parallel through the graph. After the graph has been
searched in breadth-first order, the beam of possibilities is examined in reverse order
to extract a near-optimal path. This path defines a labeling of the image and is only
sub-optimal because of the pruning heuristics used in the beam creation.

Locus search has been used in the interpretation of speech (Lowerre, 1976). Its
implementation in the image understanding task requires major modifications dus/to the
nonflinearity of the signal. Instead of implementing a form of a first-order Markov
sedrch which 'relies on only one previous node in the beam (as the speéech system
does), ARGOS implements an’ "adjacency first-order” Markov system that relies on all
surrounding nodes in the physical image.

> This thesis formulates image understanding as a problem of search; shows how Locus
search can be used to label images; describes the many sources of knowledge used in
the interpretation; shows how knowledge represented as a network can be used to
constrain the searc.i; explores extensions to the use of knowiedge; and presents the
experimental results of ARGOS. Its main contributions are the demonstration that
Locus search can be used for image understanding and the exploration of issues
involved in this use.
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CHAPTER 1: INTRODUCTION

-ﬁhis thesis is about ARGOS, a computer program that can understand images. The
term “image understanding™ means that the program can identify the major components
of a scene by using knowledge about the structure of the scene. For example, ARGOS
is able to use a map of downtown Pittsburgh to aid in the identification of the major
buildings, rivers, etc. in photographs of the city.

The technique that ARGOS uses to identify, or label, these images is called Locus
search. Locus is a powerful search technique that uses a recursively defined
evaluation function to scan an image while using networks of knowledge about the
scene to constrain the search. After the image has been scanned once, Locus is able
to extract picture labels from the results of the search.

One of the significant features of Locus search is its ability to use many diverse
sources of scene knowledge when labeling images. Not only is it able to use
information about the positions of the buildings, but it also knows their size, shape, and
environment. In general, it is expected that Locus search can be a useful technique in
applications where knowledge is used to attain goals.

This thesis, therefore, has two contributions. First, it presents a detailed discussion of
Locus search as it applies to the image interpretation problem. Some of the new
issues that arise from this implementation are the modification of the Markov
assumption used by Locus and the hierarchical application of knowledge networks.
These changes are necessary due to the topological complexity of the signal (i.e.
images are two-dimensional) and the immense amount of knowledge needed by a
complex vision system. The second and more significant contribution is ARGOS: a
working image understanding system that can deal with real-world scenes. ARGOS is
also important because it works from an internal three-dimensional model of the task
environment.
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1.1: IMAGE UNDERSTANDING

k Image understanding is defined as the application of knowledge to the task of
interpreting an image. This application consists of finding a match between the

- knowledge and the image. Once the match has been made, the image is both
interpreted and understood. It is interpreted because it has been linked to the
knowledge and therefore is labeled with knowledge-based descriptions. The image is
also understood because it is possible to extrapolate the interpretation knowledge.

For example, ARGOS has knowledge about Pittsburgh. To understand a new image, it
must find a match between that image and the Pittsburgh knowledge. This match will |
consist of pairings that link areas of the image with objects in the knowledge (i.e. "the |
area at the top is sky, the area at the bottom is Monongahela River, the area to the
left of center is Hilton Hotel, etc.”). With the results of this match, it is possible to
delve farther into the knowledge and make statements that are not explicitly in the
image ("this view is from Mount Washington™). It is this ability that makes ARGOS an
image understanding system.

AN Pt 4

In general, the image interpretation process has three components: the image, the

, knowledge, and the match. The image is often refered to as the signal and the ;
knowledge is the symbol. The match is therefore a signai-to-symbol match. The next '
section examines a number of image interpretation systems in these terms.

S TS

1.22 OTHER SYSTEMS

The table below lists a few image interpretation and image understanding systems in
terms of their signal, symbol, and match. Each system is described more fully in the
next sections.

Who Signal Symbol Match : A
, Barrow and Segment Relational Network  Heuristic Search |
1 Popplestone 1
|
Fischier and Segment Relstional Network Linear Embedding 3 ‘
Elschlager (Dynamic Programming) | 3
Feldman and Pixel Relational Best-First '
! Yakimovsky Probabilities
V Tenenbaum snd  Pixel Relstions Relaxation
Barrow (IGS)
Sekai et. al. Segment Semantic Network . Data-driven Search

(Knowledge Blocks)
6




Keng and Fu Bit Pattern Grammar Bottom-up Parse

Perkins ~ Lines and Curves  Lines and Curves  Brute Force
Waltz Lines and Shadows Junction Uictionary Relaxation
Mackworth Lines Relational Network  Relaxation
(MAPSEE)

Ballard et. al. Lines, Segments, Semantic Network  Arbitrary

: Pixels, etc.

Williams et. al. Segménls Semantic Network  Best-First
(VISIONS)

Rubin (ARGOS) Pixel or Segment  Relational Network Beam Search

1.2.1: Barrow and Popplestohe

Barrow and Popplestone (1971) divide their images into segments. A coffee cup, for

example, is broken down into three segments: the outside of the cup, the inside of the -

cup, and the hole in the handle. These three segments compose the signal description
of the cup.

The symbolic knowledge consists of a relational network. Nodes in the network are
region names and arcs that connect nodes are “facts” about the regions. For example,
a knowledge network that describes the previously mentioned coffee cup will have
three nodes for the inside, outside, and hole regions. The arc which connects the
outside region and the hole region will contain the fact that the outside region
completely surrounds the hole region. In addition, each node contains descriptive
knowledge which enables the system to help identify the proper segment (i.e. the hole
region is a small and highly compact segment).

The most obvious match process requires the evaluation of all of the segments against
each node in the knowhdg network. Even with only three segments and three nodes
there is a possibility of 3°=27 different ways to interpret the image. Therefore the
match technique is important not only for accuracy but also for space and time savings.
Barrow and Popplestone use the heuristic search technique which views the space of
segment-node alternatives as a search tree. It then searches this tres using details
from the knowledge network to guide the sesrch. Assume that the “trunk” of the
search tree branches three ways to indicate the three pairings: (segment i is inside),
(segment 1 is outside), and (segment | is hole). Each of these branches divides three
ways to list the possibilities for segment 2 and each of the nine segment 2 branches
splits three more ways for the segment 3 options. If, however, segment 2 is
surrounded by segment 1 in the image, then the search process need not examine all
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nine possibilities for segment 2, just those possibilities which satisfy the knowledge
constraint of containment. Thus, heuristic search is able to prune large portions of the
search tree by examining only the match possibilities suggested by the symbolic
knowledge.

The disadvantage of heuristic search is that it still must examine all feasible
possibilities. Locus search goes one step further in its pruning by evaluating each b
path and examining only the most likely of the feasible alternatives.

1.2.2: Fischler and Elschlager

Fischler and Elschlager (1973) also use image segments and relational knowledge
networks. The networks consist of numerical "springs” which connect region nodes.
These springs must be compressed and expanded by the match process to find the
overall set of labels that has the least spring "tension”. The maltch process uses a
form of dynamic programming (Bellman and Dreyfus, 1962) which does not suffer from
the combinatorial explosion of tree searching. Their match, called the Linear
Embedding Algorithm, prunes ail but a constant number of search tree nodes at each
level. This match may fail to find the globally optimal interpretation, but it is efficient. E
In addition, it allows for noisy data by accepting highly "stretched” springs in the final
labeling. ‘ :

The reduction of the search spacs to a linear growth is the same philosophy used by
Locus. The difference is that Locus uses a dynamic threshold to admit the most likely
nodes within the fixed growth limit. Therefore, growth of the search space is variable
but linearly bounded.

1.2.3: Feldman and Yakimovsky

" Feldman and Yakimovsky (1974) use relational probability knowledge to guide the
isolation and identification of segments, The image starts as a coilection of picture
elements (pixels) which are organized as a rectangular grid of points. The system
combines pixels into segments by breaking down the boundaries between areas of the
image that are similar. It uses a probabilistic utility function of the signal and the
symbol to compule the most probable boundary to bresk. This best-first control
structure proceeds until a stopping criteria is reached at which time the imsge is
segmented and labeled. The most interesting aspect of this system is its use of
Bayesian decision theory in computing the utility function.

Locus does not explicitly segment images. It labels each point purely on the basis of
context knowledge. The final labeling may be used to define a segmentation by
observing groups of similar labels, but that is only a by-product.




Another difference between this work and Locus is formality. Locus does not follow
the rules of decision theory very closely: it prunes and approximates frequently. The
result is a pseudo-statistical system that is only formal within heuristic bounds.

1.2.4: Tenenbaum and Barrow

Tenenbaum and Barrow (1978) apply relational knowledge to the segmentation and
interpretation task. Their system starts by crudely segmenting on the basis of pixel
similarity and then making a set of labels for each segment. It then applies iterative
relaxation to get a consistent label a refined segmentation of the image. Relaxation
works by repealedly evaluating the junctions of segments and revising segment
borders and labeis on the basis of relational constraints. Each pass of the relaxation
operation revises the list of possible segment labeis on the basis of the surrounding

segment label lists. For example, if a large segment with the label options wall and "

door surrounds a small segment with the label options window and doorknob, and one
iteration of relaxation eliminates the door option, then the next iteration will eliminate
the doorknob option. Thus, global knowledge can propagate through the image as the
relaxation iterates. The final labeling is obtained when the relaxation converges and
yields no further change to the interpretation.

The problem with relaxation techniques is they do not guarantee convergence and so
do not have well defined termination criteria.

1.25: Sakai, Kanade, and Ohta

Sakai etl. al. (1976) label image segments using a sophisticated knowledge network that
can contain procedural code and arbitrary knowledge constraints. These "knowledge
blocks” are applied first to key segments in the image. Since the knowledge blocks
can have control sections, they do the bulk of the search. Thus, instantiation of a
knowledge block can lead to the hypothesis, verification, and rejection of other
knowledge blocks. The control procedure simply runs through the list of untested
blocks until there are no more, at which time the interpretation is complete. Although
this system is fairly sophisticated, it suffers from the complexity of its data which must
be carefully constructed. :

1.26: Keng and Fu

Keng and Fu (1976) have a system which interprets satellite images by matching the
binary patterns in windows of the imsge to templates in a grammar-style knowledge




base. Each window of 8x8 points in the image is compared with every known template
in the grammar. Windows which evoke multiple templates are reduced with the
grammar to a unique label. If, for example, a window contains two intersecting lines,
each of which matches a highway template, then the grammar will generate a highway
intersection interpretation for the window. The system uses no giobal constraining
and relies heavily on its knowledge of the sensor characteristics of Landsat satellites. .

1.2.7: Perkins

At General Motors, Perkins (1977) identifies parts on a conveyor belt by comparing
their outlines to those in the knowledge base. Outlines consist of curves and straight
lines which he calls concurves. A scoring algorithm counts the number of concurves in
the image which match those in known parts. Since the system looks for relative
scores, it can accept noisy data and occluded objects. The system is even able to
extrapolate on partial matches and predict the complete placement of occluded parts
and parts that are only partially in the field of view. However, the task domain is
limited and the system wouid suffer from combinatorial explosion if it handled complex {
scenes. This is because it uses no heuristics to limit the search space: identification
requires the comparison of all concurves in the image with all concurves in the
knowledge base.

1.2.8: Waltz

Waltz (1975) matches knowledge in a list of rules to an image that consists of lines. In
addition, each segment enclosed by lines can be shaded (2 shadow) or unshaded. The
knowledge base contains alternative interpretations for the various line junction types.
Match is done with a form of relaxation that iteratively compares junction
interpretations at the ends of each line segment. After the system has converged, the
junction interpretations are used to label the surfaces and explain the shadows.

The system works in the blocks-world domain where perfect lighting makes shadows
trivial to distinguish. ARGOS uses real-world scenes which are full of shadows that are
hard to detect. However, the goal of Waltz's work is to explain shadows whereas the
goal of ARGOS is to explore a search technique, so there is no fair basis for
comparison.

E 1.2.9: Mackworth

§ Mackworth (1977) uses relaxation on a relationsl knowledge network. His input signal
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is a "sketchmap” which consists of chains of lines, Some chains are closed and form

lakes and islands. Others are open and form rivers and roads. The system initially
makes many weak pairings of labels to chains and then refines the pairings using a
network consistency algorithm. This algorithm simply re-evaluates the pairing options
based on each chain’s environment. The system eventually converges on -an
interpretation of the image. It is interesling to note that an initially noisy image can
be interpreted many times by using the final results of the first interpretation to
refine the skeichmap. The entire process is then repeated for a better overall
interpretation.

1.2.10: Ballard, Brown, and Feldman

Ballard et. al. (1977) use a semantic network that describes the scene at several levels
(region relations, pixel adjacencies, line lengths, etc.). Each image is also described at
many levels as a collection of lines, segments, volumes, etc. The user of the system
codes a query procedure using a control structure of his own choosing which explores
the semantic network and builds an instantiation of the network that corresponds to
the image. This instantiation, called a “sketchmap™ (not to be confused with
_ Mackworth’s sketchmaps) is an interpretation that links parts of the image to parts of
the semantic network. An example of a query procedure that has been built is a rib
matcher for chest X-rays. This procedure uses cost functions to numericsily determine
the best match of signal-to-symbol. Although it would be possible to code Locus in
this framework, very few alternative search strategies have actually been explored.

1.2.11: Williams, Lowrance, Hanson, and Riseman

Williams et. al. (1977) describe an ambitious effort to apply multiple sources of
knowledge to a segmented image. Their knowledge base is a semantic network of
knowledge sources that are linked hierarchically in the same manner as the Hearsay Il
speech system (Erman and Lesser, 1975). It deals with the image on many levels of
representation including lines, segments, and frames (Minsky, 1975). Control is divided
among the many knowledge sources which repeatedly hypothesize and verify signal-
to-symbol matches in a best-first search order. There are even knowledge sources
that guide other knowledge sources by focusing the system’s attention.

Locus attempts to unify many knowledge sources into one so that a single control

structure can be applied. It rejects the notion that muitipie sources of knowiedge must
be used independently.

11




1.3: LOCUS SEARCH

ARGO.) uses Locus search to interpret images. Locus was first used in the Harpy
speech understanding system (Lowerre, 1976). Harpy uses this technique on the
recognition of spoken utterances and is currently the best speech recognition system
in existence. Prior to Harpy, Dragon (Baker, 1975) used a breadth first graph
searching technique to attain the same goal.

Dragon is the theoretical grandfather of ARGOS. It uses a probabilistic function of a
Markov model to find an optimal path through a knowledge network. The technique is
very similar to the Viterbi Algorithm (Forney, 1973). Harpy relaxes the formality of
the probabilistic function and demonstrates that heuristics can be used to improve the
search. ARGOS goes one step further by modifying the Markov assumption so that the
multi-dimensionality of images can be handled. Instead of requiring that a first-order
Markov system rely on only one previous node in the search tree, ARGOS implements
an "adjacency first-order” Markov system that relies on all surrounding nodes in the
image.

Before proceeding, it is useful to stop for a moment and examine ARGOS in the light of
the signal-to-symbol match paradigm of the previous section. In Locus, the symbolic
knowledge is composed of units called Primitive Picture Elements (PPEs). These PPEs
are organized into relalional networks which specify knowledge about a scene. In
addition, PPEs have signal characteristics associated with them so that they may be
directly compared with parts of the image. ARGOS does not place any constraint on
the nature of the signal, which is why it is able to interpret both pre-segmented
images and unsegmented images.

Pixel | Pixel | Pixel | Pixel Segment

Segment Segment
Pixel | Pixel | Pixel | Pixel Segment
Unsegmented image Pre-segmented - Image

Although the signal is frequently refered to as a pixel, it should be understood that
ARGOS can deal with either pixels or arbitrarily shaped segments.

A simple example of PPE selection is in order. Assume that Locus must match a
satellite image of a field to a knowledge base which contains information about crop
locations. Locus would define each crop to be a PPE so that a relational network could
be built describing the crop locations. Similarly, each of the crop PPEs would have
signal characteristics that allow it to be matched with the image (i.e. "the alfalfs PPE
registers 4 on a brightness scale of 1 to 10"). Thus, PPEs are the common ground
between signal and symbol.

The match aspect of Locus is a two-pass search process that explores the space of
signal-to-symbol pairings. The first pass of the search, called the forward pass,

12
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constructs a highly pruned tree of alternative pairings. Each level of this search tree
corresponds to a different pixel in the image, and the various nodes at each level are
the alternative PPE labels for that pixel. The selection of tree entries (which are likely
PPEs for a given pixel) is based on a recursively defined evaluation function. This
function uses knowledge from the network, the image, and the immediate environment
of the saarch tree to determine a uniform evaluation of a signal-to-symbol match. The
completed search tree contains a multitude of pixel-to-PPE malches, each of which
identifies a path of "optimal® pixzel-to-PPE matches above it in the tree. The second
pass of Locus search, called the backtrace, simply re-examines the search trees from
the bottom up, gathering the optimal pixel-to-PPE matches into a unique labeling of the
image. Because of the Markov nature of the forward pass, the backtrace is able to
bring global constraint to bear in the final selection of image labels.

It is interesting to note that the search tree built by the forward pass is so highly

pruned that it resembles a varying sized beam of alternatives and is sometimes called
the "beam”. The beam is functionally equivalent to the stack of alternatives generated
by standard backtracking search algorithms: they both list the options that are under
consideration. However, beam search is superior to backtracking methods because it
avoids thrashing behavior.

1.4: ARGOS

ARGOS interprets pictures of downtown Pittsburgh. Fifteen of these pictures,
reproduced in Appendix I, were taken from five vantage points around the city. To
enhance variability, some were shot with a standard 50mm. lens and others were taken
with a 28mm. wide-angie lens. Seven were used for training and the other eight were
saved for test purposes. In the following table of images, the column labeled "Number
of Objects” is the number of different regions that were identified during human
labeling.

Image Vantage Point  Lens Number of Obijects
Training 1 Northwest 28mm. 17
Training 2 Northwest 28mm. 19
Training 3 Northeast 28mm. 17
Training 4 West 50mm. 26
Training 5 West 28mm. 27
Training 6 Downtown 28mm. 9
Training 7 Southwest 28mm. 27
Test 1 Northwest 50mm. 16
Test 2 Northwest 28mm. 17
Test 3 " Northwest 50mm. 15
Test 4 - Northeast SOmm. 15
Test 5 Southwest 50mm. 13
Test 6 Southwest S50mm. 19

13




Test 7 Southwest 50mm. 21
Test 8 Downtown 28mm. 7

Each image was originally digitized into a rectangular grid of 700 pixels across and
525 pixels down. However, ARGOS interprels reduced versions of those images that
are 75 by 100 pixels in size. It can also interpret images that have been divided into
arbitrarily shaped segments.

‘ . The system runs on a PDP-KL10 computer and requires approximately 100,000 words

_i of 36-bit memory. The largest part of this space is used to store the parallel search

‘ paths (typically 25 paths). It takes about five minutes of processor time to label one
75 by 100 image, but less than a minute to label a pre-segmented image.

1.5: READING THIS THESIS

The next chapter discusses Locus search in great detail. It starts by explaining how
image understanding can be formulated as a problem of search. From there, it
describes the organization of the knowiedge networks that are used in ARGOS.
Following that is a discussion of the low-level system in ARGOS: the techniques used to
give signal characteristics to PPEs. Finally comes a detailed explanation of the search
and an example of the entire process.

Chapter 3 discusses how many different knowledge sources can be used with Locus
search. In addition to expounding upon object adjacency and image pre-segmentation,
the chapter discusses the use of object size, shape, and location.

Chapter 4 discusses how knowledge can be organized hierarchically to infinitely
expand the power of Locus. Most of this chapter is speculation, but it does conclude
with a review of where ARGOS stands in its hierarchical use of knowledge.

Chapter 5 describes the initial experimental resuits that were obtained with ARGOS.

The system is currently able to label the fifteen city scenes with 207 error at the .
pixel level. It can also determine the angle of view around the city with an average :
error of 40%, Considering the complexity of the knowledge and the images, this is
quite good.

Chapter 6 concludes the thesis by evaluating the results of ARGOS.

14
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CHAPTER 2: LOCUS SEARCH \> X :

-ﬁhis chapter describes the Locus model of search as it is used in the Image
Understanding task. Locus is an efficient, non-backtracking search technique that has
proved itself successful in the Harpy speech understanding system (Lowerre & Reddy,
1977). 1t is able to provide near-optimal solutions to the network search problem in
time that is linearly bounded by the complexity of the input signal.

This chapter discusses the search technique in detail. The first section describes the
representation used by Locus to describe images and knowledge networks.

The next section is a discussion of the knowledge networks that are employed.
Coupled with this discussion is an explanation of why image interpretation is treated as
a problem of search.

Following that is a discussion of the low-level processing that is done in ARGOS. This
thesis is not specifically concerned with the low-level aspect of image interpretation,
so the discussion is somewhat cursory.

An explanation of the search process follows next. Since application of the sesrch
technique to image interpretation is one of the main contributions of this thesis, the
discussion is quite long and contains many examples.

The chapter closes with an example of Locus search.

2.1: STRUCTURE OF LOCUS KNOWLEDGE

Image understanding is the application of knowlod;o to the task of interpreting images.
As Chapter 1 pointed out, this process requires the maetching of two forms of data: the
sensed data which is the signal and the knowiedge structure which is the symbol. The

18




signal is the raw form: points of light pieced together to comprise the image. For a
computer, the points of light are grouped together into segments or picture elements
(pixels) which are describable with a set of numbers called a feature vector. These
numbers are taken directly from camera sensors and tell such values as the intensity
of red light, blue light, and green light.

The symbolic form of an image is the knowledge representation of the scene. This
form of knowledge is much more compact than the signal, so it Is easier to store.
Symbolic representations take the form of networks of information: the nodes of the
networks represent “items" and the inter-connections of the nodes represent “facts”
or qualifications about the items.

Before a machine can match a signal to a symbol, it must be able to compare the two
forms. Some systems use a third representation to do this (Ballard et. al., 1977).
ARGOS does just the opposite: instead of creating a new representation, it combines
the existing ones so that the signal and the symbol are all describable with the same
units. These units are called Primitive Picture Elements.

The Primitive Picture Element, or PPE, is the basic building block of both the signal and
the symbol. Every sensed image can be described with PPEs since each pixel can be
given a unique PPE label. Similarly, the general knowledge of a scene (sky above river
under bridge, etc.) can be described with a network, all of whose nodes are PPEs.
PPEs can be thought of as the smallest units of representation that exist for the micro-
world ot the image task. Alternately, they can be thought of as the largest object that
is both homogeneous to the signal and homogeneous to the symbol. For example, look
at training scene 6 in Appendix | (page A2). The building in the center is the
Pennsylvania State Office Building and it has a iobby that looks much different than the
rest of the structure. Proper identification of this building would therefore require
two PPEs called State-office and State-office-lobby because, although they are
symbolically homogeneous (both State Office), they are not homogeneous to the signal
(they look different). Similarly, observe the three cross-shaped buildings, one of which
is obscuring the other two, on the right side of in test scene 2 (page A3). Although all
three look the same, they are assigned different PPEs because they are symbolically

different (from left to right, they are Gateway Two, Gateway One, and Gateway Three).
To sum it up, the PPE is the label that Locus uses when interpreting images.

The choice of PPEs varies with the micro-world being explored. It is dependent on the
level of detail in the knowledge base and on the ability of the system to ootically
distinguish different parts of an object. If, for example, one wishes to determine
whether an image is a city scene or an office scene, then neither the sensed data nor
the symbolic representation need be very compliex. The PPEs sky, building, road, wall,
desk, and floor would suffice. Note that each of these PPEs is comprised of optically
similar pixels in the sensed image and represents adequate symbolic information to
determine the scene type.

If, however, a finer level of scene detail were to be interpreted, then the selection of

PPEs would have to be more compiex. The following PPEs might be selected for the
detailed analysis of a Pittsburgh city scene:
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